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Abstract

I use a network simulator to explore rate-based congestion control in networks with "smart"
links thatcan feed back information to tell senders to adju_, their transmission rates. This method
differs in a very importantway from congestion control in which a congested network component
just drops packets--the most commonly used method. It is clearly advantageous for the links in
the network to communicate with the end users about the network capacity, rather than the users
unilaterally picking a transmission rate. The components in the middle of the network, not the
end users, have information about the capacity and traffic in the network.

I experiment with three different algorithms for calculating the control rate to feed back to the
users. All of the algorithms exhibit problems in the form of large queues when simulated with a
configuration modeling the dynamic3 of a packet-voice system. However, the problems are not
with the algorithms themselves, but with the fact that feedback takes time. If the network steady-
state utilization is low enough that it can absorb transients in the traffic through it, then the large
queues disappear. If the users arem_xlified to start sending slowly, to allow the network to adapt
to a new flow without causing congestion, a greater portion of the network's bandwidth can be
used.
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Chapter One

] JI Jl IbJI qlL/Idl I,,i _,,, Ib 1%P Aa

A network consists of users, who want to transmit data to one anoti:er,, . : by various

switches and links. Each component of the network has some finite t %_'_ ,_ce_sing

and/or transmitting data packets. Therefore, the transmission of data ii ..... .. , .;:t. must be

controlled in two logically separate but necessarily interrelated ways. The :,..._ -, _ not send

faster than its corresponding receiver can process the data (flow control), antl .. sum of the

flows through any part of the network must not exceed the capacity of that part (congestion

control), Each method of contro: is limited by the other. The transmitter cannot send faster than

the capacity of the network even if the receiver could process the flow, and the network cannot

force the transmitter to use all of the available capacity if doing so would overwhelm the receiver.

In this thesis I use simulation to explore a new method of congestion control (from [Mosely 84])

in which the links in the network regulate the rate of the data being sent by the individual users. I

This introduction gives an overview and describes the limitations of current flow and congestion
control methods and describes the operation of the new rate-based method. Chapter 2 contains a

detailed description of the network model used in tl_ simulation and of the implementation of the

rate-based congestion control algorithm. In Chapter 3, I describe the results ob_ined by running

the simulator on two different network topologies, o'_e designed by Mosely and a simpler one

designed by me. I also attempt to obtain better results by modifying the operation of the protocol.

Finally, in Chapter 4 I draw some conclusions from the results and give suggestions for further
research.

I.I Flow Control

The sender and receiver of data must somehow agree on the rate and amount of data flowing from

the sender to the receiver. Suchflow control is most commonly accomplished by using windows.

The window is the amount of unackno Medged data that the sender is allowed to send. When a

receiver acknowledges the receipt of some of the data, the sender can send that much more. At

ol ut_. wlndow.any given time there is only as much data in transit as the size ...... "

Window-based flow control works acceptably v_ell for relatively low delay networks. However,

it fails when it is necessary to have large amounts of data in transit in order to utilize all of the

bandwidth of the network, as in a high-speed but high delay network. If a data transfer is to make

effective use of the available bandwidth, the window must be made very large. The window must

be large enough for the sender to keep sending until it gets an acknowledgment from the receiver.

1990014671-010



However, if such a large window is transmitted all at once, the flood of packets is very likely to

overload some intermediate network component, resulting in the loss of packets.

When using a network with a very large delay, a flow control method based on the regulation of

the rate of the data being sel_tcan work much better. Rather than controlling the amount of data

outstanding, the sender and receiver negotiate the rate at which packets will be transmiaed. The

NETBLT protocol [Clark 87] uses rate-based flow control. NETBLT has been implemente,:l and

shown to be able to use a large fraction of the available bandwidth even over a long-delay

network such as the Wideband ,.;atellitenetwork. The Wideband network has a round-trip delay

of 1.8 secoads, and an available bandwidth of approximately one megabit/second. In tests,

NETBLT achieved steady-state (not including time to set up the connection) throughput values

between 926 and 942 megabits/second, using more than 90 percent of the available bandwidth

[Lambert 87].

1.2 Congestion Control

While flow control con_rns the ends of a single connection, congestion control concerns the

aggregate of the flows in the network. When the sum of the flows through a component of the

network exceeds its capacity, something must give. Usually, when a network becomes

congested, the result is a build up of packets in the queues of its switches. The switches either

cannot process the packets fast enough, or the links connected to the switches cannot transmit the

packets fast enough. In either case, switches ,Aost commonly deal with congestion by dropping

packets when they reach the limit of their buffer capacity. In a system using window-based flow

control, the build up of queue _,,,,d dropping of packets causes the users to reduce the amount of

data sent because acknowledgments will be delayed or lost because of the congestion.

In contrast, the loss of packets does not slow down NETBLT, which uses rate-based flow control.

The sender will keep sending packets at the negotiated rate (at least until a complete buffer of

data is sent; see the NETBLT paper) regardless of bow many are lost in the network. The end

users negotiate the transmission rate without any knowl_ge of the intervening network. (Of

course, seme knowledge about a workable rate must be e;.ther hardwired into the protocol or

given by the (human) user, since the protocol as described in [Clark 87] has no way of finding out

from the network what sort of a rate is reasonable., Some work is being done on an algorithm for

NETBLT that uses the interpacket arrival time to decide, without any direct communication from

the network itself, if there is congestion or not. Since the receiver knows the rate at which the

packets were transmitted, if they arrive at a different rate there must be some sort of congestion

along the way. If congestion is detected, the transmission rate is adjusted to the rate at which the

packets were actually received ILambert 88]. While this method of congestion detection and

control has worked in simulation, it does have one disadvantage. It is possible to end up with an

unfair allocation of bandwidth among the various flows through the congested network
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component. If the switches that are congested in the network control their flows, they can

CUlU_dl_ sl lail ])IU_ILIUII UI LII_ O. Y O.IIOtUl_._ Ug.AII_.A_CVI%IIIAI LU _,l.m._,ll llx.s v..This thesis explores the behavior of a simple computer network using another type of rate-based

,>rotocol. The end user_ send Jata at some rate which is de, ermined by feedback from the links in

the network. The links in the network calculate a "control rate" based on the number of flows

asing the link, capacity of the link, and current transmission rate of the various flows through the

link. The control rate of a link is the maximum rate, in bits per second, at which any sender using

this link should transmit. As a packet travels through the network, each link puts the minimum of

the packet's current control rate and the link's calculated control rate into the packet (the sender

sets the control rate of me packet to infinity when it is generated). Therefore, when the packet

reaches its destination it contains the minimum control rate of all the links along its path. The

receiver periodicaily transmits short control packets to its ,_ender that contain the 1,tstcontrol rate

received. When the sender gets a control packet, it sets its transmission rate to the control rate

found therein, thereb) completing the feedback loop.

I simulate three algorithms from Mosely for calculating the control values. Moseiy examined the

convergence -,rodfaimess of the three algorithms, and ran a computer simulation of them. With a

dynamic network load, her simulation produce6 unsatisfactory results for all three. The links

could not prevent chmages in the number of flows from causing large packet queues to build up.

She concluded that the control value _gorlthrns did not convelge quickly enough to handle the

dynamics of the packet voice model that she was simulating.

The protocol exhibits an interesting non-linearity as successively larger loads are placed upon it.

As the applied load grows closer to the link capacity, the queues jump from tens to thou°,ands of

packets. There. is essentially no intermediate region of operation. Once the queues become so

large, the delay becomes .sohuge as to render the feedback control useless.

The protocol can use more of the link capacity before failing by introducing a "slow start"

convention. 1 A new talk spurt sends at one tenth of its assigned rate u_.til it receives its first

control packet..'_,_s delay gives the links a better chance to react to the new flow before its data

can seriously affect the network. Slow start does not prevent the instability--it merely movez the

point of instability higher on the scale of link utilization.

IThis "slow start" shares its name and genexal idea with VmnJ_obson's slow start for TCP ( [jmccbr,on 881). They
ire otherwise unrelated.

i0

1990014671-012



Chapter Two

The Simulation

2.1 The Model

I used Mosely's network model adapted to my simulator to perform ":he experiments. The
network consists of users, hosts, switc', s, and links. Hosts and switches did not exist in

Mosely's simulator, and merely contain tile packet queues in my simulator (see below). Users

transmit data packets to their partners (other users) at a constant rate. The links ',tlongthe route of

a packet use information about the sender's transmission rate contained in ;he packet to keep

statistics about the number of flows in the link and the transmission rates of those flows. Using

the table of flows and rams, each liok calculates a control rate at which the flows through it

should send. This rat, is inserted into packets that pass through the link, and the _ceiver of the

packet periodically puts the '_.gstreceived control rate into a control packet and sends it back to the

sender. The sending user changes the length of the data packets that it sends to make its data

transmission rate be the rate as received in the latest control packet. This feedback loop works in

both directions. In other words, the data packets arriving at the receiver contain a Ir_r_rnission

rate for the receiver (to use when it starts sending) just as the control packets arriving at the

sender contain the rate for the sender. Figure 2-1 shows the structure of a path that data packets

might take to get from sender to receiver.

The statistics of the flow of packets in the network are also from Mosely, and mode! the packet-

switched transmission of voice. Each user sends data only to one other user, its partner. The

parmers alternate sending data packets to each other in "talk spu_." The length of each talk

spurt in packets is a geometric random variable. Since the packet transmission rate is constant,

the data transmission rate is varied by varying the length of the gackets. When a talk spurt ends,

the sending user marks the last packet as such and _comes the receiver. When the receiver

receives the last packet it becomes the sender. A detailed description of each network component

fodows:

2.1.1 USER

Users come in pairs. Each user sends to and receives from its paru,,.c only. The partners alternate

sending data packets in talk spu_s that last (on the average) 1.2 seconds. An active user sends 50

data packets per second. The data transmission rate is varied by making the length of each packet

be the desired rate (in bits/second) divided by 50. Each packet sent by a user contains a contr,91

rate, a feedback rate, and the current transmission rate of the sending user. The control rate is

irqtialized to infinity when the packet is created, and is modified by links along its mute as

I1
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Figure 2-1:Examplepathbetween two users
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discussed below. The feedback rate is the control rate from the last control packet received

(which will become the current transmission rate of this user's partner). A flag in the packet is

set if it is the last packet in a talk spurt. Each data packet has a 1/60 probability of being the last

packet in a spurt, so that the number of packets per talk spurt is a geo: txic random variable with

mean 60.

The inactive partner in __pair of users sends a control packet to its active partner every 100

milliseconds. The control packet has a fixed length of ten bits, and contains only the control rate

and feedback rate as discussed above. 2

When a user (active or inactive) receives a packeL it sets its current transmission rate to the

feedback rate contained in the packet (which is the control value last received by this user's

partner), and sets its control value to the cor_trol value in the packet (to be sent back to its

partner). If the end-of-spurt flag is set, the receiving user becomes active and starts sending data

packets.

2.1.2 HOST

A host serves as the intermediary between t,_sers and links. It decides where to send packets by

looking up their destination in a routing table, then sends the packet on after a constant delay. If

the packet is going to a link and the link is busy, the host queues the packet until its destination

link is free. There is a separate output queue for each link attached to the host. The host has an

infinite number of buffers, and so no packets are ever dropped due to lack of buffer si,ace.

2.1.3 SWITCH

A switch is very similar to a host, but connects only links together, not users. 3

2.1.4 LINK

A link receives a packet from a host or a switch, and then transmit._, the packet to the next host or

switch on the packet's route. (The next host or switch on the route has been placed into the

packet after the routing table lookup in the previous host or switch.) The time to transmit the

packet is a constant plus the link's capacity divided by the packet length. The minimum of the

control value in the packet and the link's current control value (calculated as described below) is

placed in the packet.

2Theten bit length is an arbitrarylimit used by Mosely. I amnot surehow to fit both of these values (not to mendon
destinationaddress, etc.) into ten bits in reality. Also, the 100 millisecond intervalbetween control packets is the
nut.her chosenby Moselyas often enough, butnot so oftenas to adda significantload tothe network.

3Moselydidnot have hosts or switches. A link's queue was contained withinthe link, and each packetcontained its
route. My implementationbehaves similarlyto hers; thisrepresentationconforms to the structureof the simulatorused
for this evaluation.

13
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Each link maintains a table, keyed b_ destination user, containing the current transmi_z:_on rate of

each flow as reported in the last data packet received belonging to that flow. When the last

packet in a talk spurt is received, the flow is removed from the table. When a packet for a

destination not in the table is received, a new entry is created in the table. At fixed intervals, hhe

link uses the information from this table to calculate a new control value, using one of the three

algorithms described below.

2.1.5 Routing

Ronting in the network is static. A route is defined in each direction for each pair of users (so the

path from one user to its partner may be different than the return path). The mutes are stored in a

global table, and each host or switch uses itself and the packet's destination as a key in order to

find out the next link and next host or switch in the packet's route.

2.2 Control Value Algorithms

The links calculate their control values using one of _ree formulas, (using the following

variables):

pj(t) Control rate (in bits/second) of link number j at time t. This value is placed
into each packet passing through the link (as described above) so that it will
find its way back to the transmitter of data packets.

cj Effective c_ city of link j, cy=aCy, where 0.O<a< 1.0 and Cy is the real
capacity of the link in bits per second. 4 Used to calculate the control value as
described below.

Wj Current number of flows seen at link j. This number is the size of the link's
table of flows and transmission rates as described above. When a packet is

received that belongs to a flow that is not in table, Wj is incremented. When
the last packet in a talk spurt is processed by the link, its transmission rate is

removed from the table, and Wj is decremented.
r.. Current ,_nsmis:!on rate of flow i as seen at link j. This is the current

transmission rate as reported by each active user in its packets.

fj Y.irij for each active flow i through the link. This is the reported total flow of
data through the link, calculated by adding the reported rates of all flows
through the link.

The three formulas:

nayden: pj(t+l)=max[_fWj, min[_,pj(t)+(_-fj(t))/Wj].
The new control rate is the old control rate adjusted up or down by the
amount of extra or deficit capacity. The adjustment is divided by the number
of flows since the control rate applies to each flow. This formula is from
[Hayden 81].

4Moselyfixeda at0.8,whileI usedseveraldifferentvalues.SeeChapter3.

14
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Mosely: pj(t+l)= max [c/_, min [cj, max [ro (0) + (cj-_ (0)/Wj]].
MmrrrftMisthe.mnximum transmissionratercnortedofalltheflowsthough
_eligl_i-The new control rate is the largest reported transmission rate
adjusted up or down by the amount of extra or deficit capacity. The
adjustment is divided by the number of flows since the control rate applies to
each flow. The largest reported transmission rate is used so that if some of
the flows are constrained by other, slower (or more busy) links then the flows
that are constrained by this link will get more of this link's capacity.

Jaffe: pj(t+ l)=max [cj/(Wj+l), min[_,pj(t)+(_-fj(O-Pj(t))/(Wj+l)]].
The new control rate is the old control rate adjusted up or down by the
amount of extra or deficit capacity minus the old control rote. The control
values calculated by this formula tend to be smaller than those calculated by
the other two for two reasons. The _ffective capacity of the link used in the
calculation is smaller First, it is divided by W.+ 1 rather than W.. Second,• 1 J .
the current control rate is subtracted from the adjustment. This formula _s
from [Jaffe 80]•

Note that each of the formulas bounds the control value by the effective capacity of the link

divided by the number of flows (number of flows plus one for Jaffe) and the effective capacity.

The links calculate a new control value either every 20 or every 100 miUiseconds. 5 In addition,

the links can optionally trse a "protocol" (invented by Mosely) to decide whether to calculate a
new control value or not. The idea behind the protocol is to walt until all senders have received

the latest control rate before computing a new control rate• The protocol allows a new -alue to he

calculated only if all the flows currently in the link's table are transmitting at a rate less than or

equal to the link's current control value: rij(O<pj(O for every flow i through the link. 'Ibis
requirement guarantees that all senders using the link have either received the new rate, or are

transmitting at a lower rate received from some other link. If the protocol is not satisfied, the link

waits for 20 milliseconds before trying again.

2.3 Tke Simulator

The sim_lator that I used is one developed at MIT. It is an interactive, event driven simulator. It

consists of an I/O manager that provides an interface to h_ X window system, and an event

manager that allows network components to schedule events for each oth_,. Any sort of packet

switching network component can be simulated, provided that its behavior can be d_o_;_'.,zdin a

single-threaded C program, i wrote new components to act as users and links, but used e_isting
host and switch components to connect users and links together, to route the packets, and to

manage the packet queues for the links. All simulations were run with identical random number

generator seeds.

5Theseparameterscanallbcsettoanyvalue--thenumbersgivenherearejusttheonesthatMosclyandIusedinthe
simulation.

15
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Chapter Three

Results

3.1 Mosely's Topology

Mosely's topology consists of eight links and 80 users. (See Figure 3-1.) Each user i has as its

partner user 81-i. Links one through four handle 20 users each (averaging 10 flows each, since

only half the users are active at any given time). Links five through eight handle eight, 16, 24,

and 32 users (an average of four, eight, twelve and sixteen flows) each, respectively. The links

are unidirectional, and in general the packets of each partner travel along different links. 6 For

example, user 1 transmits packets to its partner, user 80, over li'_k 1 followed by link 8. User 80

sends packets back on link 4 followed by link 5.

Mosely ran simulations for both a static and dynamic network. In the static network, all the even

numbered users transmit without stopping. The length of a talk spurt is infinite. She sho _ed that

all of the different algorithms eventually converge to the c_,ect control value: though with

different types of oscillation and different periods. In the dynamic network, the users alternate

talk spurts as described above. Mosely simulated each of the algorithms with 'aad without the

protocol. The Hayden and Jaffe algorithms were run only with slow control rate updates, and tl,*

Mosely algorithm only with fast updates because she concluded from the static results that the,

performed best under those conditions.

In Mosely's simulation, none of the algorithms behave very well, and in particular the Hayden

and Mosely algorithms "produce totally unacceptable queues. ''7 As shown by the static results,

every algorithm takes at least 2-3 seconds to converge. Mosely concludes that the algorithms do

not work well in the dynamic case because all of the algorithms take too long to converge to the

correct control value.

The rate at which the control rates converge is not the problem per se. The problem is that the

new flows enter while transmitting at a control rate calculated for a smaller number of flows.

Until the new control rates are fed back to the senders, the link will be overloaded. If the link

does not have enough unused capacity to absorb the transient, large queues will build up

regardless of the control rate calculation algorithm. Mosely does not run the dynamic simulation

for Hayden or Jaffe with fast control rate updates, nor with her own algorithm with slow updates

6Four pairs do share link 7, but they should not make a significant change in the opexating cl-,azactedstics of the
network.

7Mosely. p. 131.

16
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Senders: 1-2_ 21-40 41-60 61-80

All users send on
one of these links. 1

I Switch

All users receive °n 51 /

one of these links. ¢

1-2 3-6 7-12 13-20
21-22 23-26 27-32 33-40

Receivers: 41-42 43-46 47-52 53-60
61-62 63-66 67-72 73-80

Figure 3- l:Mosely's Topology
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(or at least she nowhere mentions such a simulation). She bases this decision on the static .'_sults.
T r_n nil _a_l_t_t_ _ _lrvr_thm _rlnt_ f_a_n_l_nn_, _nd _tr_n_l Tha _r_nt_r_ thnt I_K_I_,

did not run are neither better nor worse than uhe others--they do not follow the static results. Just

as an example, Hayden's algorithm with no protocol and slow update control updates, (figure

A-l) (one that Mosely did run) certainly does not behave any better than the same algorithm with

fast control rate updates (figure A-2).

She also comments that the "bits transmitted" value for the Jaffe algorithm oscillates, and that

the oscillation is because of the oscillation in control value in the static case. However, the value

does not oscillate on its own--it actually follows the number of flows. As the number of flows

decreases, the bits transmitted rate will go down until the control value changes to compensate,

and the change has been fed back to the active users. In some sense, the bits transmitted value is

the derivative of the number of flows. The only reason that the Jaffe appears to "oscillate" more

than the other algorithms is that it does a better job of avoiding large queues. If there is a queue

of packets waiting to be transmitted over a link, the bits transmitted value will naturally stay at

the capacity of the link, and not oscillate at all. If the packet queue is generally empty, however,

the bits transmitted value will vary as the number of flows changes, as described above.

Finally, she concludes that Jaffe is the best of a bad lot. The queues that build up are not as big as

the others, and the average delay between the time a packet enters the queue and the time that it

finishes transmission is much smaller than any of the other algorithms. In addition, the

throughput of Jaffe is only slightly lower than the others. However, delay is not a valid

comparison between these algoritluns in this case. Of course the other algorithms have a much

greater delay--the packets spend much of their time waiting in queues. In this case, delay is a

symptom, not a problem with the algorithm. Second, the only reason that Jaffe does not have

such large queues is that it does net attempt to use as much of the capacity of the link as the other

two. When calculating a new control value, it uses Wj+I as the aivisor rather than Wj. The
effective capacity of the link is therefore smaller than the other two. As I will show later, if the

effective capacity is lowered for the other two algorithms, they will not have large queues either,

while if the effective capacity is increased for Jaffe, it does not work any more. Finally, if large

queues build during a simulation run, the average throughput is also not a valid comparison.

During the time that there are packets in the queue, the link should be running at its maximum

capacity. However, this throughput, while nice and high, is not in any sense a measure of the

effectiveness of the particular algorithm. The circumstances under which the large throughput is

obtained (large queues) are undesirable.
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3.2 My Topology

111 U/UUI LU IIlUI_ '_.,a_)_J-_ lUuJi_ l_kJl l),U_ _I,aA_JJL_.IILJLL jLUIIL_ JLUI U 1_ _ -#Uffl L_VllC_'VX_A U_ USV _ VAA_a*au_ _V _'_

at the interaction of traffic in two directions, anu to explore the oscillation problem, I ran more

simulations with a simpler topology. I also ranthe simulations for 150 seconds rather than 30 to

see how the network behaved for longer periods of time, and varied the effective capacity

parameter.

Fhe topology I used has forty users and two half duplex links (the equivalent of one full duplex

link). See figure 3-2. All the odd numbered users (1,3 ..... 39) communicate with their partners

through link 1, and their partners (user i has as its partner user 41-0 send packets back through

link 2. During normal operation, there should be 20 flows active at any instant (on the average,

10 through each link).

•J1 even-numbered users

] Host [

! 2

Host

All odd-numbered users

Figure 3-2:Hcybey's Simple Topology

3.2.1 Stable and unstabler gion

The protocol operates either stably or unstably. As the "effective capacity" parameter is varied,

the maximum queue length observed during a simulation run makes a sudden jump from less than
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190 to several thousand. When operating in the stable region, the queues have a starn,p _pike of

up to several hundred, then drop to around five packets with occasional spikes up to 50. In the

unstable region, the queues oscillate wildly from zero to two or three thousand packets, and down

again. The difference can be clearly seen in figures A-5 and A-6. The parameters of the two

simulations differ only in the effective capacity, which is 0.55 for the first run and 0.56 for the

second. In figure A-5, the queue hovers around ten or so and the number of flows oscillates

around 10, while in figure A-6, the queue varies from zero to 2000 and the number of flows

oscillates from zero to 15 in phase with the queue oscillation. One run has a region of operation

during which the queues oscillate between zero and seven or eight hundred packets. However,

the oscillations disappear and the protocol remains in the stable region for the rest of the run.

As the effective capacity parameter is increased, there is not always a clean break between stable

and unstable operation. If effective capacity is much lower or much higher than the point at

which unstable operation begins, the protocols always operate stably or unstably, respectively.

As the effective capacity is increased in steps, the protocol may operate stably, unstably, m-J then

stably again. However, there is no intermediate region of operation. No combination of

parameters results in a queue that could be considered to be "between" the stable and unstable

regions.

Once the queues build up to unreasonable lengths, the packets from which the links get their rate

information are so old that the control has no effect. Because of the wild oscillations, the users

who have just finished a talk spurt are sending control packets to their paaners with rates that are

very fast. The link with no queue has no load, and so has set its control rates all the way up.

3.2.2 How to Operate Stably

The key to avoiding the unstable region is to avoid attempting to use too large a percentage of a

link's capacity. When runnirg the simulator with the same parameters as used by Mosely, the

only algorithm that works at all is Jaffe. As mentioned above, I believe that the reason that Jaffe

seems to perform better is because it does not attempt to use as much of the iink's capacity as

Hayden or Mosely. In order to test t',_ishypothesis, I ran the Hayden and Mosely algorithms with

a lower effective link capacity.

Note that the "effective link capacity" as set in the simulation and used to calculate the control

rates can not be compared between different algorithms. When I adjusted the effective capacity

so as to make all three algorithm work, the average throughput (calculated over the entire

simulation run) is hardly different _tween the three algorithms despite the different values for

effective capacity. Maximum throughputs are 30 kbps for Hayden (at an effective capacity of

0.7), 31 kbps for Jaffe (a:.0.79), and 3i kbps for Mosely (at 0.69).
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3.2.3 Slow Start

Since it is the variance in the talk spurts that cause the protocol to enter the unstable region, I tried

making the users start a talk spurt by sending slowly. When a user starts a talk spurt, it sends at a

rate that is one tenth of its control rate until it receives its first control packet. After receiving its

first control packet, it resumes transmitting at full speed. While in slow start, it still puts the full

rate in each transmitted packet, but it doesn't actually transmit at that rate.

Slow start increases by a significant amount the percentage of the link capacity that can be used

before the protocol enters the unstable region. With slow start, the maximum throughputs (at

effective capacity) achieved are 35 kbps for Hayden (0.88), 36 kbps for Jaffe (1.01), and 35 kbps

for Mosely (0.82). See Table 3-1 for a complete listing. The table lists the highest effective

capacity (and throughput) at which each combination of algorithm and parameters could be run

before becoming unstable. In other words, the simulation run with the next larger effective

capacity value was unstable. However, once it has become unstable, slow start does not help the

protocol recover. The huge queueing delays render any sort of control, slow start or not,
worthless.

with slow start

Algorithm/protocol/update rate Eft. capacity Throughput Eft. capacity "Ilaroughput

Hayder_no/fast 0.55 25.4 0.70 29.4
Hayden/no/slow 0.70 30.4 0.90 35.7
Hayden/yes/fast 0.39 19.4 0.53 23.8
Hayden/yes/slow 0.58 25.6 0.79 31.7
Jaffe/no/fast 0.73 29.8 0.90 33.4
Jaffe/no/slow 0.81 32.0 1.01 36.2
Jaffe/yes/fast 0.51 22.1 0.70 27.6
Jaffe/yes/slow 0.61 24.3 0.80 29.0
Mosely/no/fast 0.69 32.1 0.87 37.0
Mosely/no/slow 0.73 33.4 0.79 33.3
Mosely/yes/fast 0.70 31.2 0.88 35.8
Mosely/yes/slow 0.74 32.5 0.91 36.4

Table 3-1: Table of maximum throughputs (KBits/sec) and effective capacities

3.2.4 Why the protocol does not recover

When the system does enter the unstable region, it does not, in general, ever recover. 8 There are

three problems that contribute to its staying there. One, the convoying effect, is easily visible on

all of the unstable figures, but especially on figures A-3 and A-4. Note that the size of the queue

and the number of flows through the link oscillate synchronously, and that the number of flows

8Thereareseveralrunsinwhichthequeuesoscillatedfora fewcyclesupto800or 900packetsandthendorecover.
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recorded by the link drops close to zero when the queue drains. While there is a large queue on

one of the two links, the other link is almost completely ta'loaded. When the queues become

large, the queueing delay becomes longer than the 1.2 second average length of a talk spurt.

Therefore, all the active us,_rs transmitting through the overloaded link have finished their talk

spurts, but their partners have not become active yet since they have not received the end-of-spurt

packets which are waiting in the queue. When the queue drains (since there are no more packets

arriving in it any more), many of the inactive user start transmitting. Since there were almost no

flows in the other direction, they alI start transmitting at the very high rate fed back by the

unloaded link. A queue then develops on that link, beginning another cycle. Although the flows

are supposed to start and stop randomly and independently, they instead fall into a pattern of all

the flows going in one direction, then the other.

The second problem that aggravates the instability is the "forward queueing problem." Links

extract the sending rate information from the packets as they are transmitted. If there is a large

queue in only one direction, however, the information in the packets that the link sees is old. The

control value calculated by the link is fed back to the senders very quickly (because the opposite

direction has very littl,: load). However, 'he control is based on old information, and so will not

be correct.

I attempted to solve the forward queueing problem by changing the simulator such that the link

took the sender's rate out of packets when they were put on the end of the queue, not when they

were sent. This way, the link's picture of the world is up to dale. Unfortunately, this change

resulted in slightly different behavior, but did not solve the problem of large queues. See figures

A-7 and A-8. The new strategy led to more and faster oscillation of the queues. The change

helps the forward queueing problem--the queues are somewhat smaller, and drain mote quickly--

but dae convoy problem still remains. The senders get a more correct control value, but the

inactive users get the large control value from the lightly loaded link more quickly than before.

Even more of them start transmitting at the fast rate. and the queue in the other direction builds up

much more quickly.

Finally, if there is an extremely large queue in one direction, some of the :alk spurts in the other

direction will operate without any control at all. The queueing delay of a 2500 packet queue is

longer that the duration of a talk spurt. All the control packets from the receiver will be waiting

in the queue. Therefore, if the link on which the data is being sent was initially unloaded, the

sender will send at its maximum rate for the entire duration of the talk spurt. If only a few

senders start under these conditions on the unloao,'d link, they will build up enough of a queue to

continue the oscillation as the other queue drain._::md more _nder begin talk spuds.
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Chapter Four

Conclusions

The key to congestion control with these rate-bated algorithms is to insure that the network can

absorb the transients in the data flow expected in the environment. Any of the three algorithms

can provide effective congestion control with almost equal throughputs if the "effective

capacity" used in their control value calcu_.ations is adjusted correctly.

If the effective capacity i_ not adjusted correctly, and large queues do build up, then none of the

three algorithms will in general recover. The convoying and forward queueing problems

collaborate to cause the huge packet queues to oscillate from link to link, at least for this

particular set of traffic dynamics.

The effect of the convoy problem is that the flows all travel in one direction, then the other, rather

than in random pattems as intended. With a large queue, all of the currently active flows in the

network end before the end-of-spurt packets drain out of the queue. Since the flows have ended,

the link without a queue has little or no load on it. When the end-of-spurt packet do finally arrive

at their destinations, all of the inactive users start sending over the previously unloaded link at the

maximum rate. That link then suddenly has an attempted flow of four or five times its capacity, a

large queue accumulates, and the cycle starts _11over again.

The forward queueing problem is also bccat, se of the large queue. The link updates its

information about a flow and its current transmission rate when it sends a packet of that flow. If

there is a large queue, the packet is very old, so the link is working with old information.

Therefore, the contro values that are being produced and sent back to the senders are based on

what the senders were doing a second ago or more.

I tried to alleviate the forward queueing problem by giving the links the information in a packet

when it arrived on the queue, not when it was sent. However, this attempt aggravated the convoy

problem. The fix, while helping the queue drain more quickly, also ensured that the large control

value of the relatively unloaded link was quickly sent to the inactive users so that even more of

them transmitted at the large rate when they became active.

I also tried to lower the percentage of the bandwidth that had to be reserved to absorb transients

by changing the users to use slow start when beginning a talk spurt. Slow start allowed me to set

the effective capacity of all the algorithms higher (resulting in a higher average throughput)

before they slipped over the edge into instability.

23

1990014671-025



Appendix A

Figures

All of the figures in this appendix depi,:t the number of bits transmitted through the link every 0.1

seconds (yielding a number approximately equal to the bits per se_onrv throughput of the link

divided by 10), the current number of 2.,,-,3 _een by the lml: tml_ J00, and d_eoutput queue size,

in packets, of the host or switch attached to the link. The queue size is scaled either by 10 or by

1, depending on its maximum value (if the captions contains "Qxl0", the queue length graph has

been scaled)_ Since the bits transmitted value is calculated every tenth of a second, it will not

always be exactly accurate. A packet whose transmission cros_c.s a tenth of a second boundary

wiii be counted entirely in the second interval, making the value too _ow in the first interval and

too hign in the second one.

Figures A-I and A-2 (the next two pages) are from my simulation of Mosely's topology and her

set of parameters. Link. capacity is 40 kbp: effective capacity is 0.8 times real capacity,

propag._tion delay is 3 milliseconds, and link update attempt interval (the time between attempts

to calculate a new contro! rate) :,s20 milliseconds. The algorithm, update interval, and protocol

use are as shown in the figure captions.
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Figure A-l: Moscly's Topology 1
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Figure A-2: Mosely's Topology 2
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The next two figures (A-3 and A-4) were produced by running my simple topology (see figure

3-2) using all of Mosely's parameters unchanged (as described above). The character of the

results (compared to figures A-1 and A-2) is not changed because of the different topology (note

that the time scales of the two pairs of figures are different).
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Figure A-3: Hcybey's Topology, Moscley's Parameters 1
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Figure A-4: Heybey's Topology, Moseley's Parameters 2
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The next two figures (A-5 and A-6) are examples of the difference between stable and unstable

operation of the protocols. The particular examples were run on Heybey's topology using

Hayden' algorithm, fast (20 millisecond) updates of :',_e links' control rates, and not using

Moseley's "protocol." The parameters of the two simulations differ only in that that figure A-5

used 0.55 as the effective capacity, while figure A-6 used 0.56.
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Figure A-5: Stable Operation
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Figure A-6: Unstable Operation
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Figures A-7 and A-8 were produced by changing the sin_ulator so that each link was given the

transmit rate of each packet as it was enqueued, rather than as it was transmitted. Otherwise, the

parameters of the simulation are unchanged.
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Figure A-8: Attempt to Solve Forward Queueing Pr3blem 2
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